a2 United States Patent

Bhatia et al.

US009111089B1

US 9,111,089 B1
Aug. 18,2015

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMS AND METHODS FOR SAFELY

EXECUTING PROGRAMS
(75) Inventors: Yadvinder Bhatia, Punjab (IN); Anand
Sankruthi, Chennai (IN)
(73) Assignee: Symantec Corporation, Mountain View,
CA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 260 days.
(21) Appl. No.: 13/023,162
(22) Filed: Feb. 8,2011
(51) Imt.ClL
GO6F 21/00 (2013.01)
GO6F 21/55 (2013.01)
(52) US.CL
CPC ..o GOG6F 21/55 (2013.01); GOGF 21/00
(2013.01)
(58) Field of Classification Search
CPC ettt GOG6F 21/00
USPC ittt 726/22
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,953,833 B2 *
2006/0212931 Al*

5/2011 Ben-Shaul etal. .. .
9/2006 Shulletal.cceovevrnnnnn 726/10

2010/0005291 Al*
2011/0047613 Al*
2011/0145926 Al*

1/2010 Hulten etal. 713/156
2/2011 Walsh 726/16
6/2011 Dalcher et al. 726/26

OTHER PUBLICATIONS

William E. Sobel; U.S. Appl. No. 12/858,085; Systems and Methods
for Digitally Signing Executables with Reputation Information; Aug.
17, 2010.

* cited by examiner

Primary Examiner — David X Yi
Assistant Examiner — Sibte Bukhari

(74) Attorney, Agent, or Firm — ALG Intellectual Property,
LLC

(57) ABSTRACT

A computer-implemented method for safely executing pro-
grams may include identifying an attempt to launch an
executable file. The computer-implemented method may also
include identifying a reputation associated with the execut-
able file. The computer-implemented method may further
include determining, based on the reputation, that the execut-
able file is not trusted. The computer-implemented method
may additionally include, in response to determining that the
executable file is not trusted, fulfilling the attempt by sand-
boxing a process instantiated from the executable file. Various
other methods, systems, and computer-readable media are
also disclosed.

20 Claims, 6 Drawing Sheets

System

100

Modules

102

Identification Module

104

Reputation Module

106

Determination Module

108

Sandboxing Module

10

U.S. Patent

Aug. 18, 2015 Sheet 1 of 6

System
100

Modules
102

Identification Module
104

Reputation Module
106

Determination Module
108

Sandboxing Module
110

FIG. 1

US 9,111,089 B1

U.S. Patent Aug. 18, 2015 Sheet 2 of 6 US 9,111,089 B1

200

\

Reputation Server
206

Network
204

A

A 4

Computing System
202

Identification Module Executable File
104 210

v !

Reputation Module Reputation
106 220

v

Determination Module
108

v

Sandboxing Module Process
110 230

FIG. 2

U.S. Patent

300

\

Aug. 18, 2015 Sheet 3 of 6 US 9,111,089 B1

=

Y

Identify an attempt to launch an executable file
302

A 4

Identify a reputation associated with the executable file
304

Y

Determine, based on the reputation, that the executable file is not
trusted
3086

!

In response to determining that the executable file is not trusted,
fulfill the attempt by sandboxing a process instantiated from the
executable file
308

A 4

=

FIG. 3

US 9,111,089 B1

Sheet 4 of 6

Aug. 18, 2015

U.S. Patent

0S¥
WajsAg a4
177 —
Aiisibey weisAg vey
3|4 [enyiIA
A
H A
\ 4 A 4
08¥ F453%
ss8201d $s8001d
A
i[5
Xoqpues
A
2ol
se[npop
A A A A
0LF o 09% 1747 o 57
uoneindsy 9|l s|geInosxy uonendsy 8l4 a|geInosxy

00t

US 9,111,089 B1

Sheet 5 of 6

Aug. 18, 2015

U.S. Patent

Aows | WalsAs

€ES f4 3]
a0i1n8(abeioig a9iAs(abelolg
dmyoeg Aewnd
gee ¥es
A A ELICTg! 2018
nduy Aeldsiq
A A
h 4 y
e 0g% 928 s
0B BIU| LRI Joydepy alnjonJjselu|
abelolg induj Aeidsig uolEdIUNWIWOYD)
A A A \
A 4 \ 4 A 4
A A A A A A v
4 y y y 4
p4] o
soepa| 025 81g SINPON 7S
UONEDIUNWWON I8|jonuod Qi J18||0Jju0n) Atowsy — 10859001
916

X

01§

waisAg Bunndwo)

US 9,111,089 B1

Sheet 6 of 6

Aug. 18, 2015

U.S. Patent

{NJ069

ao1Aa(g

(17069

201n8Q

569
Aelry sfelo)g
abieiu|

089
oHged NVS

9 OId

{NJ0Z9

ao1n8Q

A

(1J0Z9

EL]IYTq|

A

{N)099

aolAeQ

A

7099

aolAeQ

A

0E9
wsIo

059
JompeN

029
a0

001
woIsAS

019
uslo

AN

009
2IN1981IY2.JY YIOMIBN

US 9,111,089 B1

1
SYSTEMS AND METHODS FOR SAFELY
EXECUTING PROGRAMS

BACKGROUND

Consumers and businesses face a growing tide of malicious
software that threatens the stability and performance of their
computers and the security of their data. Computer program-
mers with malicious motivations have created and continue to
create viruses, Trojan horses, worms and other programs in an
attempt to compromise computer systems. These malicious
programs are often referred to as malware. In an attempt to
evade detection, malicious programmers may inject malware
into or among legitimate programs.

One approach to protect a computing system from many of
the undesired effects of malware is to run programs on the
computing system within a virtualized environment (i.e., to
“sandbox” the programs). A sandboxed program that contains
malware may be prevented from making changes to the sys-
tem that effect the operation of other programs and/or the
system as a whole. Unfortunately, this approach may suffer
from various drawbacks. For example, sandboxing may con-
sume additional system resources and/or reduce application
interoperability. Accordingly, the present disclosure
addresses a need for additional and improved systems and
methods for safely executing programs.

SUMMARY

As will be described in greater detail below, the instant
disclosure generally relates to systems and methods for safely
executing programs. Systems and methods described herein
may safely execute programs by dynamically sandboxing
untrusted programs (e.g., at runtime) based on the reputation
of each program. For example, a method may include identi-
fying an attempt to launch an executable file, identifying a
reputation associated with the executable file, determining,
based on the reputation, that the executable file is not trusted,
and then, in response to determining that the executable file is
not trusted, fulfilling the attempt by sandboxing a process
instantiated from the executable file.

The systems described herein may identify the reputation
of the executable file in any suitable manner. For example,
these systems may transmit an identification of the executable
file to a server that includes a reputation database for execut-
able files and then receive the reputation of the executable file
from the server. In some examples, identifying the reputation
may include identifying community-generated reputation
data associated with the executable file.

Sandboxing the process may include any of a variety of
steps. In some examples, sandboxing the process may include
intercepting one or more attempts by the process to change a
system state (such as an attempt to modify a system registry or
a file), making a record of the attempted change, intercepting
at least one subsequent attempt by the process to inspect the
system state, and then fulfilling the subsequent attempt to
inspect the system state with the record of the attempted
change. Additionally or alternatively, sandboxing the process
may include creating a virtual file that records at least one
system change performed by the process. In some examples,
the systems described herein may also sandbox one or more
calls to one or more libraries invoked by the process as a part
of sandboxing the process.

In some examples, sandboxing the process may involve
sandboxing the process alone and not any other process.
Additionally or alternatively, sandboxing the process may
entail sandboxing the process without sandboxing any pro-

10

20

25

30

35

40

45

50

55

60

65

2

cess instantiated from trusted executable files launched from
the same operating environment as the executable file.
Features from any of the above-mentioned embodiments
may be used in combination with one another in accordance
with the general principles described herein. These and other
embodiments, features, and advantages will be more fully
understood upon reading the following detailed description in
conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate a number of exem-
plary embodiments and are a part of the specification.
Together with the following description, these drawings dem-
onstrate and explain various principles of the instant disclo-
sure.

FIG.1is ablock diagram of an exemplary system for safely
executing programs.

FIG. 2is ablock diagram of an exemplary system for safely
executing programs.

FIG. 3 is a flow diagram of an exemplary method for safely
executing programs.

FIG. 4is ablock diagram of an exemplary system for safely
executing programs.

FIG. 5 is a block diagram of an exemplary computing
system capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

FIG. 6 is a block diagram of an exemplary computing
network capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

Throughout the drawings, identical reference characters
and descriptions indicate similar, but not necessarily identi-
cal, elements. While the exemplary embodiments described
herein are susceptible to various modifications and alternative
forms, specific embodiments have been shown by way of
example in the drawings and will be described in detail
herein. However, the exemplary embodiments described
herein are not intended to be limited to the particular forms
disclosed. Rather, the instant disclosure covers all modifica-
tions, equivalents, and alternatives falling within the scope of
the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

As will be described in greater detail below, the instant
disclosure generally relates to systems and methods for safely
executing programs. Systems and methods described herein
may safely execute programs by dynamically sandboxing
untrusted programs (e.g., at runtime) based on the reputation
of each program. By dynamically sandboxing untrusted pro-
grams based on their reputation, these systems and methods
may provide protection against malware as needed without
sandboxing an entire system (thereby potentially consuming
more computing resources) or modifying applications (e.g.,
by repackaging them as virtualized applications). Accord-
ingly these systems and methods may automatically and
dynamically provide sandboxing for programs as needed
without performing unnecessary virtualization operations.

The following will provide, with reference to FIGS. 1, 2,
and 4, detailed descriptions of exemplary systems for safely
executing programs. Detailed descriptions of corresponding
computer-implemented methods will also be provided in con-
nection with FIG. 3. In addition, detailed descriptions of an
exemplary computing system and network architecture

US 9,111,089 B1

3

capable of implementing one or more of the embodiments
described herein will be provided in connection with FIGS. 5
and 6, respectively.

FIG. 1 is a block diagram of an exemplary system 100 for
safely executing programs. As illustrated in this figure, exem-
plary system 100 may include one or more modules 102 for
performing one or more tasks. For example, and as will be
explained in greater detail below, exemplary system 100 may
include an identification module 104 programmed to identify
an attempt to launch an executable file. Exemplary system
100 may also include a reputation module 106 programmed
to identify a reputation associated with the executable file.
Exemplary system 100 may additionally include a determi-
nation module 108 programmed to determine, based on the
reputation, that the executable file is not trusted.

In addition, and as will be described in greater detail below,
exemplary system 100 may include a sandboxing module 110
programmed to, in response to determining that the execut-
able file is not trusted, fulfill the attempt by sandboxing a
process instantiated from the executable file. Although illus-
trated as separate elements, one or more of modules 102 in
FIG. 1 may represent portions of a single module or applica-
tion.

In certain embodiments, one or more of modules 102 in
FIG. 1 may represent one or more software applications or
programs that, when executed by a computing device, may
cause the computing device to perform one or more tasks. For
example, as will be described in greater detail below, one or
more of modules 102 may represent software modules stored
and configured to run on one or more computing devices, such
as the devices illustrated in FIG. 2 (e.g., computing system
202 and/or reputation server 206), computing system 510 in
FIG. 5, and/or portions of exemplary network architecture
600 in FIG. 6. One or more of modules 102 in FIG. 1 may also
represent all or portions of one or more special-purpose com-
puters configured to perform one or more tasks.

Exemplary system 100 in FIG. 1 may be deployed in a
variety of ways. For example, all or a portion of exemplary
system 100 may represent portions of exemplary system 200
illustrated in FIG. 2. As shown in FIG. 2, system 200 may
include a computing system 202 needing protection from
malware in communication with a reputation server 206 via a
network 204. In one embodiment, and as will be described in
greater detail below, computing system 202 may include
identification module 104, reputation module 106, determi-
nation module 108, and sandboxing module 110.

Identification module 104 may be programmed to identify
an attempt to launch an executable file 210. Reputation mod-
ule 106 may be programmed to identify a reputation 220
associated with executable file 210 (e.g., by retrieving repu-
tation 220 from reputation server 206). Determination mod-
ule 108 may be programmed to determine, based on reputa-
tion 220, that executable file 210 is not trusted. Sandboxing
module 110 may be programmed to, in response to the deter-
mination that executable file 210 is not trusted, fulfill the
attempt by sandboxing a process 230 instantiated from
executable file 210.

Computing system 202 generally represents any type or
form of computing device capable of reading computer-ex-
ecutable instructions. Examples of computing system 202
include, without limitation, laptops, desktops, servers, cellu-
lar phones, personal digital assistants (PDAs), multimedia
players, embedded systems, combinations of one or more of
the same, exemplary computing system 510 in FIG. 5, or any
other suitable computing device.

Reputation server 206 generally represents any type or
form of computing device that is capable of providing repu-

15

30

35

40

45

50

65

4

tation data relating to one or more programs. Examples of
server 206 include, without limitation, application servers
and database servers configured to provide various database
services and/or run certain software applications.

Network 204 generally represents any medium or architec-
ture capable of facilitating communication or data transfer.
Examples of network 204 include, without limitation, an
intranet, a wide area network (WAN), a local area network
(LAN), a personal area network (PAN), the Internet, power
line communications (PL.C), a cellular network (e.g., a GSM
Network), exemplary network architecture 600 in FIG. 6, or
the like. Network 204 may facilitate communication or data
transfer using wireless or wired connections. In one embodi-
ment, network 204 may facilitate communication between
computing system 202 and reputation server 206.

FIG. 3 is a flow diagram of an exemplary computer-imple-
mented method 300 for safely executing programs. The steps
shown in FIG. 3 may be performed by any suitable computer-
executable code and/or computing system. In some embodi-
ments, the steps shown in FIG. 3 may be performed by one or
more of the components of system 100 in FIG. 1 and/or
system 200 in FIG. 2.

As illustrated in FIG. 3, at step 302 one or more of the
systems described herein may identify an attempt to launch
an executable file. For example, at step 302 identification
module 104 may, as part of computing system 202 in FIG. 2,
identify an attempt to launch executable file 210.

As used herein, the phrase “executable file” may refer to
any set of one or more computer-executable instructions.
Examples of executable files include portable executable
files, native executable files, bytecode files executed with the
assistance of an interpreter, and/or script files.

Identification module 104 may perform step 302 in any
suitable manner. For example, identification module 104 may
identify the attempt to launch the executable file by interfac-
ing with an application programming interface of an operat-
ing system in which the executable file is launched. In some
examples, identification module 104 may operate as part of a
daemon configured to monitor an operating system for
attempts to launch executable files. In some examples, iden-
tification module 104 may also intercept and/or suspend the
attempt to launch the executable file (until, e.g., the systems
described herein determine whether to sandbox a process
instantiated from the executable file).

FIG. 4 illustrates an exemplary system 400 for safely
executing programs. As shown in FIG. 4, system 400 may
include an executable file 410. Using FIG. 4 as an example,
identification module 104 (as part of modules 102) may iden-
tify an attempt to launch executable file 410.

Returning to FIG. 3, at step 304 one or more of the systems
described herein may identify areputation associated with the
executable file. For example, at step 304 reputation module
106 may, as part of computing system 202 in FIG. 2, identify
reputation 220 associated with executable file 210. Using
FIG. 4 as an additional example, reputation module 106 may
identify a reputation 420 associated with executable file 410.

The term “reputation,” as used herein, generally refers to
information that conveys the opinion of a specific community
(such as the user base of a security-software publisher) on the
trustworthiness or legitimacy of an executable file, software
publisher, and/or file source (such as a web domain or down-
load link). Examples of reputation information include, with-
out limitation, reputation scores (where, for example, high
reputation scores indicate that a file, software publisher, or
file source is generally trusted within a community and low
reputation scores indicate that a file, software publisher, or
file source is generally untrusted within a community), preva-

US 9,111,089 B1

5

lence information (e.g., information that identifies the num-
ber or percentage of user devices within a community that
contain (1) aninstance of a particular file, (2) files provided by
aparticular software publisher, and/or (3) files obtained from
a particular file source, such as a web domain), or any other
information that may be used to identify a community’s opin-
ion on the trustworthiness or legitimacy of a file, software
publisher, and/or file source.

Reputation module 106 may identify the reputation of the
executable file in a variety of ways. For example, reputation
module 106 may transmit an identification of the executable
file (e.g., a fingerprint of the executable file generated with a
hash function, identifying metadata associated with the
executable file, etc.) to a server that hosts a reputation data-
base for executable files. Reputation module 106 may then
receive the reputation of the executable file from the server. In
some examples, reputation module 106 may receive reputa-
tion information relating to the executable file from the server
(e.g., the reputation of a software publisher of the executable
file, the reputation of a source of the executable file, etc.). As
mentioned earlier, the reputation of the executable file may be
community-generated. For example, the server that hosts the
reputation database may receive information from various
clients regarding the executable file, the publisher of the
executable file, and/or the source of the executable file.

In some examples, reputation module 106 may identify the
reputation of the executable file by retrieving cached reputa-
tion data relating to the executable file. For example, the
reputation of the executable file may have been previously
retrieved from a reputation server and then stored locally as
metadata for the executable file.

Returning to FIG. 3, at step 306 one or more of the systems
described herein may determine, based on the reputation, that
the executable file is not trusted. For example, at step 306
determination module 108 may, as part of computing system
202 in FIG. 2, determine that executable file 210 is not trusted
based on reputation 220. Using FIG. 4 as an additional
example, determination module 108 may determine that
executable file 410 is not trusted based on reputation 420.

Determination module 108 may perform step 306 in any
suitable manner. For example, determination module 108
may determine that the executable file is not trusted because
a reputation score of the executable file fails to meet a prede-
termined threshold. In some examples, determination module
108 may use the reputation in concert with other information
relating to the executable file to determine that the executable
file is not trusted. For example, in addition to the reputation of
the executable file, determination module 108 may use other
potential malware indicators, such as suspicious signatures
present in the executable file and/or the context in which the
attempt to launch the executable file was made (e.g., whether
the executable file was selected from an application menu, a
web browser attempted to launch the executable file, the
executable file was part of a list of programs to launch on
startup, etc.). Generally, determination module 108 may use
any suitable algorithm or formula incorporating the reputa-
tion of the executable file to determine that the executable file
is not trusted.

Returning to FIG. 3, at step 308 one or more of the systems
described herein may, in response to determining that the
executable file is not trusted, fulfill the attempt to launch the
executable file by sandboxing a process instantiated from the
executable file. For example, at step 308 sandboxing module
110 may, as part of computing system 202 in FIG. 2, sandbox
process 230 instantiated from executable file 210. Using FIG.

10

15

20

25

30

35

40

45

50

55

60

65

6

4 as an additional example, sandboxing module 110 may
create a sandbox 430 for a process 432 instantiated from
executable file 410.

As used herein, the term “sandboxing” may refer to any
method for virtualizing changes made by a process. For
example, sandboxing may entail preventing a process from
directly accessing one or more system resources. In some
examples, sandboxing may include exposing one or more
virtual resources (e.g., a virtual storage device) to a process
that represent one or more corresponding system resources
removed from the view of the process. Additionally or alter-
natively, sandboxing may include imposing one or more fil-
ters on interactions between a process and a system resource
(e.g., checking for and blocking potentially malicious inter-
actions). In some examples, sandboxing may include impos-
ing one or more limitations on interactions between a process
and a system resource (e.g., the extent to which the process
may consume the system resource). In some examples, sand-
boxing a process may functionally isolate the process from
one or more other processes (e.g., preventing communication
between the process and other processes, preventing the pro-
cess from affecting the state of other processes, etc.).

As used herein, the term “process” may refer to a program
in execution (e.g., an instantiation and/or running copy of a
program expressed by an executable file). In some examples,
the process may include multiple processes, threads, and/or
subprocesses. Sandboxing module 110 may also sandbox
these processes, threads, and/or subprocesses as part of sand-
boxing the process.

Sandboxing module 110 may perform step 308 in a variety
of'ways. For example, sandboxing module 110 may sandbox
the process by intercepting one or more attempts by the pro-
cess to change a system state. For example, sandboxing mod-
ule 110 may intercept an attempt by the process to modify a
system registry. In this example, sandboxing module 110 may
intercept each and every attempt by the process to modify the
system registry. Alternatively, sandboxing module 110 may
intercept some attempts by the process to modify the system
registry (e.g., sensitive settings within the system registry)
while allowing other attempts by the process to modify the
system registry (e.g., creating settings that pertain only to the
application represented by the executable file). In another
example, sandboxing module 110 may sandbox the process
by intercepting one or more attempts to modify a file. In this
example, sandboxing module 110 may intercept each and
every attempt by the process to modify a file. Alternatively,
sandboxing module 110 may intercept only certain attempts
by the process to modify a file (e.g., system files, files per-
taining to other applications, etc.) and/or may allow only
certain attempts by the process to modify a file (e.g., files that
pertain only to the application represented by the executable
file) while intercepting all other attempts. Generally, sand-
boxing module 110 may intercept attempts to modify any
portion of a computing system running the process (e.g.,
configuration settings, data files, executable files, etc.) that
may affect the state of the computing system and/or any
application within the computing system.

Once sandboxing module 110 intercepts an attempt by the
process to change a system state, sandboxing module 110
may make a record of the attempted change. Sandboxing
module 110 may then intercept one or more subsequent
attempts by the process to inspect the system state and fulfill
the subsequent attempt to inspect the system state with the
record of the attempted change.

US 9,111,089 B1

7

Using FIG. 4 as an example, the systems described herein
may have determined that executable file 410 is untrusted
based on its reputation 420. Accordingly, sandboxing module
110 may sandbox process 432 instantiated from executable
file 410 in sandbox 430. Sandboxing module 110 may, with
sandbox 430, intercept any attempt by process 432 to write to
a system registry 440 or a file system 450. Sandboxing mod-
ule 110 may record these attempts, and, where possible, fulfill
subsequent attempts by the process to inspect system registry
440 or file system 450 with the record.

Returning to step 308, in some examples sandboxing mod-
ule 110 may sandbox the process by creating a virtual file that
records one or more system changes performed by the pro-
cess. For example, sandboxing module 110 may redirect
attempts by the process to write to a system registry or to a file
to the virtual file. Sandboxing module 110 may then filter
reads by the process through the virtual file. For example,
sandboxing module 110 may intercept an attempt by the
process to write to a configuration file. Sandboxing module
110 may apply the write instead to the virtual file. The process
may later attempt to read from the configuration file. Instead
of fulfilling the read attempt from the configuration file, sand-
boxing module 110 may fulfill the read attempt from the
virtual file to provide the process with a view of the configu-
ration file consistent with the earlier write attempt.

Using FIG. 4 as an example, sandboxing module 110 may
redirect intercepted write attempts by process 432 to a virtual
file 434 (e.g., instead of allowing the process to perform the
write attempts on system registry 440 and/or file system 450).
If process 432 later attempts to read from system registry 440
or file system 450, sandboxing module 110 may first pass the
read attempt through virtual file 434. Any read attempts and/
or portions of read attempts not fulfilled by virtual file 434
may then be fulfilled by system registry 440 and/or file system
450.

Generally, sandboxing module 110 may use any virtual-
ization methods, systems, and/or techniques to sandbox the
process. For example, sandboxing module 110 may sandbox
the process by invoking a sandboxing function of a separate
virtualization system.

In some examples, sandboxing module 110 may sandbox a
call to a library invoked by the process. For example, the
process may invoke a method in a trusted library, and sand-
boxing module 110 may intercept and isolate file system
writes and/or registry changes attempted by the library in
response to the invocation by the process. Additionally or
alternatively, the process may attempt inter-process commu-
nication with a trusted process. Sandboxing module 110 may,
in some examples, then sandbox the trusted process.

In some examples, sandboxing module 110 may sandbox
the process alone and not any other process. For example,
instead of virtualizing an entire operating system, sandboxing
module 110 may apply a sandbox only to the process (e.g.,
because only the process was determined to be untrusted).
Accordingly, other processes may initiate and run outside of
the sandbox before, during, and/or after the course of execu-
tion of the process. These other processes may therefore be
able to directly access system resources while the process
runs within the sandbox.

Additionally or alternatively, sandboxing module 110 may
sandbox the process without sandboxing any process instan-
tiated from trusted executable files launched from the same
operating environment as the executable file. For example,
sandboxing module 110 may sandbox only the process and
any other untrusted process launched from the same operat-
ing environment (e.g., the same computing system and/or

10

15

20

25

30

35

40

45

50

55

60

65

8

operating system). Sandboxing module 110 may leave pro-
cesses from trusted executable files to execute as normal,
outside of any sandbox.

Using FIG. 4 as an example, the systems described herein
may identify an executable file 460 with a reputation 470.
These systems may determine, based on reputation 470, that
executable file 460 is trusted. Accordingly, sandboxing mod-
ule 110 may allow a process 480 instantiated from executable
460 to execute without sandboxing process 480. Accordingly,
process 480 may write to system registry 440 and/or file
system 450. Process 432 and process 480 may run at the same
time. While the systems described herein may dynamically
sandbox process 432 upon determining that executable file
410 is untrusted based on reputation 420, these systems may
allow process 480 to run without any virtualization.

Returning to step 108, in some examples, sandboxing mod-
ule 110 may sandbox the process for a single session. For
example, sandboxing module 110 may virtualize and store
changes made by the process while the process runs and then
discard these changes when the process terminates. Addition-
ally or alternatively, sandboxing module 110 may sandbox
the process across sessions. For example, changes sandbox-
ing module 110 may save changes made by the process even
after the process terminates for use when the executable file is
launched again. After step 308, method 300 may terminate.

By dynamically sandboxing untrusted programs based on
their reputation, the systems and methods described herein
may provide protection against malware as needed without
sandboxing an entire system (thereby potentially consuming
more computing resources) or modifying applications (e.g.,
by repackaging them as virtualized applications). Accord-
ingly these systems and methods may automatically and
dynamically provide sandboxing for programs as needed
without performing unnecessary virtualization operations.

FIG. 5 is a block diagram of an exemplary computing
system 510 capable of implementing one or more of the
embodiments described and/or illustrated herein. Computing
system 510 broadly represents any single or multi-processor
computing device or system capable of executing computer-
readable instructions. Examples of computing system 510
include, without limitation, workstations, laptops, client-side
terminals, servers, distributed computing systems, handheld
devices, or any other computing system or device. In its most
basic configuration, computing system 510 may include at
least one processor 514 and a system memory 516.

Processor 514 generally represents any type or form of
processing unit capable of processing data or interpreting and
executing instructions. In certain embodiments, processor
514 may receive instructions from a software application or
module. These instructions may cause processor 514 to per-
form the functions of one or more of the exemplary embodi-
ments described and/or illustrated herein. For example, pro-
cessor 514 may perform and/or be a means for performing,
either alone or in combination with other elements, one or
more of the identifying, transmitting, receiving, determining,
intercepting, making, fulfilling, creating, and/or sandboxing
steps described herein. Processor 514 may also perform and/
or be a means for performing any other steps, methods, or
processes described and/or illustrated herein.

System memory 516 generally represents any type or form
of volatile or non-volatile storage device or medium capable
of storing data and/or other computer-readable instructions.
Examples of system memory 516 include, without limitation,
random access memory (RAM), read only memory (ROM),
flash memory, or any other suitable memory device. Although
not required, in certain embodiments computing system 510
may include both a volatile memory unit (such as, for

US 9,111,089 B1

9

example, system memory 516) and a non-volatile storage
device (such as, for example, primary storage device 532, as
described in detail below). In one example, one or more of
modules 102 from FIG. 1 may be loaded into system memory
516.

In certain embodiments, exemplary computing system 510
may also include one or more components or elements in
addition to processor 514 and system memory 516. For
example, as illustrated in FIG. 5, computing system 510 may
include a memory controller 518, an input/output (I/O) con-
troller 520, and a communication interface 522, each of which
may be interconnected via a communication infrastructure
512. Communication infrastructure 512 generally represents
any type or form of infrastructure capable of facilitating com-
munication between one or more components of a computing
device. Examples of communication infrastructure 512
include, without limitation, a communication bus (such as an
ISA, PCI, PCle, or similar bus) and a network.

Memory controller 518 generally represents any type or
form of device capable of handling memory or data or con-
trolling communication between one or more components of
computing system 510. For example, in certain embodiments
memory controller 518 may control communication between
processor 514, system memory 516, and I/O controller 520
via communication infrastructure 512. In certain embodi-
ments, memory controller 518 may perform and/or be a
means for performing, either alone or in combination with
other elements, one or more of the steps or features described
and/or illustrated herein, such as identifying, transmitting,
receiving, determining, intercepting, making, fulfilling, cre-
ating, and/or sandboxing.

1/O controller 520 generally represents any type or form of
module capable of coordinating and/or controlling the input
and output functions of a computing device. For example, in
certain embodiments I/O controller 520 may control or facili-
tate transfer of data between one or more elements of com-
puting system 510, such as processor 514, system memory
516, communication interface 522, display adapter 526, input
interface 530, and storage interface 534. I/O controller 520
may be used, for example, to perform and/or be a means for
performing, either alone or in combination with other ele-
ments, one or more of the identifying, transmitting, receiving,
determining, intercepting, making, fulfilling, creating, and/or
sandboxing steps described herein. [/O controller 520 may
also be used to perform and/or be a means for performing
other steps and features set forth in the instant disclosure.

Communication interface 522 broadly represents any type
or form of communication device or adapter capable of facili-
tating communication between exemplary computing system
510 and one or more additional devices. For example, in
certain embodiments communication interface 522 may
facilitate communication between computing system 510 and
a private or public network including additional computing
systems. Examples of communication interface 522 include,
without limitation, a wired network interface (such as a net-
work interface card), a wireless network interface (such as a
wireless network interface card), a modem, and any other
suitable interface. In at least one embodiment, communica-
tion interface 522 may provide a direct connection to aremote
server via a direct link to a network, such as the Internet.
Communication interface 522 may also indirectly provide
such a connection through, for example, a local area network
(such as an Ethernet network), a personal area network, a
telephone or cable network, a cellular telephone connection,
a satellite data connection, or any other suitable connection.

In certain embodiments, communication interface 522
may also represent a host adapter configured to facilitate

25

30

40

45

10

communication between computing system 510 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, without limitation, SCSI host adapters, USB host
adapters, IEEE 1394 host adapters, SATA and eSATA host
adapters, ATA and PATA host adapters, Fibre Channel inter-
face adapters, Ethernet adapters, or the like. Communication
interface 522 may also allow computing system 510 to
engage in distributed or remote computing. For example,
communication interface 522 may receive instructions from a
remote device or send instructions to a remote device for
execution. In certain embodiments, communication interface
522 may perform and/or be a means for performing, either
alone or in combination with other elements, one or more of
the identifying, transmitting, receiving, determining, inter-
cepting, making, fulfilling, creating, and/or sandboxing steps
disclosed herein. Communication interface 522 may also be
used to perform and/or be a means for performing other steps
and features set forth in the instant disclosure.

As illustrated in FIG. 5, computing system 510 may also
include at least one display device 524 coupled to communi-
cation infrastructure 512 via a display adapter 526. Display
device 524 generally represents any type or form of device
capable of visually displaying information forwarded by dis-
play adapter 526. Similarly, display adapter 526 generally
represents any type or form of device configured to forward
graphics, text, and other data from communication infrastruc-
ture 512 (or from a frame buffer, as known in the art) for
display on display device 524.

As illustrated in FIG. 5, exemplary computing system 510
may also include at least one input device 528 coupled to
communication infrastructure 512 via an input interface 530.
Input device 528 generally represents any type or form of
input device capable of providing input, either computer or
human generated, to exemplary computing system 510.
Examples of input device 528 include, without limitation, a
keyboard, a pointing device, a speech recognition device, or
any other input device. In at least one embodiment, input
device 528 may perform and/or be a means for performing,
either alone or in combination with other elements, one or
more of the identifying, transmitting, receiving, determining,
intercepting, making, fulfilling, creating, and/or sandboxing
steps disclosed herein. Input device 528 may also be used to
perform and/or be a means for performing other steps and
features set forth in the instant disclosure.

As illustrated in FIG. 5, exemplary computing system 510
may also include a primary storage device 532 and a backup
storage device 533 coupled to communication infrastructure
512 via a storage interface 534. Storage devices 532 and 533
generally represent any type or form of storage device or
medium capable of storing data and/or other computer-read-
able instructions. For example, storage devices 532 and 533
may be a magnetic disk drive (e.g., a so-called hard drive), a
floppy disk drive, a magnetic tape drive, an optical disk drive,
a flash drive, or the like. Storage interface 534 generally
represents any type or form of interface or device for trans-
ferring data between storage devices 532 and 533 and other
components of computing system 510.

In certain embodiments, storage devices 532 and 533 may
be configured to read from and/or write to a removable stor-
age unit configured to store computer software, data, or other
computer-readable information. Examples of suitable remov-
able storage units include, without limitation, a floppy disk, a
magnetic tape, an optical disk, a flash memory device, or the
like. Storage devices 532 and 533 may also include other
similar structures or devices for allowing computer software,
data, or other computer-readable instructions to be loaded

US 9,111,089 B1

11

into computing system 510. For example, storage devices 532
and 533 may be configured to read and write software, data, or
other computer-readable information. Storage devices 532
and 533 may also be a part of computing system 510 or may
be a separate device accessed through other interface sys-
tems.

In certain embodiments, storage devices 532 and 533 may
be used, for example, to perform and/or be a means for per-
forming, either alone or in combination with other elements,
one or more of the identifying, transmitting, receiving, deter-
mining, intercepting, making, fulfilling, creating, and/or
sandboxing steps disclosed herein. Storage devices 532 and
533 may also be used to perform and/or be a means for
performing other steps and features set forth in the instant
disclosure.

Many other devices or subsystems may be connected to
computing system 510. Conversely, all of the components
and devices illustrated in FIG. 5 need not be present to prac-
tice the embodiments described and/or illustrated herein. The
devices and subsystems referenced above may also be inter-
connected in different ways from that shown in FIG. 5. Com-
puting system 510 may also employ any number of software,
firmware, and/or hardware configurations. For example, one
or more of the exemplary embodiments disclosed herein may
be encoded as a computer program (also referred to as com-
puter software, software applications, computer-readable
instructions, or computer control logic) on a computer-read-
able medium. The phrase “computer-readable medium” gen-
erally refers to any form of device, carrier, or medium capable
of storing or carrying computer-readable instructions.
Examples of computer-readable media include, without limi-
tation, transmission-type media, such as carrier waves, and
physical media, such as magnetic-storage media (e.g., hard
disk drives and floppy disks), optical-storage media (e.g.,
CD- or DVD-ROMs), electronic-storage media (e.g., solid-
state drives and flash media), and other distribution systems.

The computer-readable medium containing the computer
program may be loaded into computing system 510. All or a
portion of the computer program stored on the computer-
readable medium may then be stored in system memory 516
and/or various portions of storage devices 532 and 533. When
executed by processor 514, a computer program loaded into
computing system 510 may cause processor 514 to perform
and/or be a means for performing the functions of one or more
of the exemplary embodiments described and/or illustrated
herein. Additionally or alternatively, one or more of the exem-
plary embodiments described and/or illustrated herein may
be implemented in firmware and/or hardware. For example,
computing system 510 may be configured as an application
specific integrated circuit (ASIC) adapted to implement one
or more of the exemplary embodiments disclosed herein.

FIG. 6 is a block diagram of an exemplary network archi-
tecture 600 in which client systems 610, 620, and 630 and
servers 640 and 645 may be coupled to a network 650. Client
systems 610, 620, and 630 generally represent any type or
form of computing device or system, such as exemplary com-
puting system 510 in FIG. 5. In one example, client system
610 may include system 100 from FIG. 1.

Similarly, servers 640 and 645 generally represent com-
puting devices or systems, such as application servers or
database servers, configured to provide various database ser-
vices and/or run certain software applications. Network 650
generally represents any telecommunication or computer net-
work including, for example, an intranet, a wide area network
(WAN), a local area network (LAN), a personal area network
(PAN), or the Internet.

10

15

20

25

30

35

40

45

50

55

60

65

12

As illustrated in FIG. 6, one or more storage devices 660
(1)-(N) may be directly attached to server 640. Similarly, one
or more storage devices 670(1)-(N) may be directly attached
to server 645. Storage devices 660(1)-(N) and storage devices
670(1)-(N) generally represent any type or form of storage
device or medium capable of storing data and/or other com-
puter-readable instructions. In certain embodiments, storage
devices 660(1)-(N) and storage devices 670(1)-(N) may rep-
resent network-attached storage (NAS) devices configured to
communicate with servers 640 and 645 using various proto-
cols, such as NFS, SMB, or CIFS.

Servers 640 and 645 may also be connected to a storage
area network (SAN) fabric 680. SAN fabric 680 generally
represents any type or form of computer network or architec-
ture capable of facilitating communication between a plural-
ity of storage devices. SAN fabric 680 may facilitate commu-
nication between servers 640 and 645 and a plurality of
storage devices 690(1)-(N) and/or an intelligent storage array
695. SAN fabric 680 may also facilitate, via network 650 and
servers 640 and 645, communication between client systems
610, 620, and 630 and storage devices 690(1)-(N) and/or
intelligent storage array 695 in such a manner that devices
690(1)-(N) and array 695 appear as locally attached devices
to client systems 610, 620, and 630. As with storage devices
660(1)-(N) and storage devices 670(1)-(N), storage devices
690(1)-(N) and intelligent storage array 695 generally repre-
sent any type or form of storage device or medium capable of
storing data and/or other computer-readable instructions.

In certain embodiments, and with reference to exemplary
computing system 510 of FIG. 5, a communication interface,
such as communication interface 522 in FIG. 5, may be used
to provide connectivity between each client system 610, 620,
and 630 and network 650. Client systems 610, 620, and 630
may be able to access information on server 640 or 645 using,
for example, a web browser or other client software. Such
software may allow client systems 610, 620, and 630 to
access data hosted by server 640, server 645, storage devices
660(1)-(N), storage devices 670(1)-(N), storage devices 690
(1)-(N), or intelligent storage array 695. Although FIG. 6
depicts the use of a network (such as the Internet) for
exchanging data, the embodiments described and/or illus-
trated herein are not limited to the Internet or any particular
network-based environment.

In at least one embodiment, all or a portion of one or more
of the exemplary embodiments disclosed herein may be
encoded as a computer program and loaded onto and executed
by server 640, server 645, storage devices 660(1)-(N), storage
devices 670(1)-(N), storage devices 690(1)-(N), intelligent
storage array 695, or any combination thereof. All or a portion
of one or more of the exemplary embodiments disclosed
herein may also be encoded as a computer program, stored in
server 640, run by server 645, and distributed to client sys-
tems 610, 620, and 630 over network 650. Accordingly, net-
work architecture 600 may perform and/or be a means for
performing, either alone or in combination with other ele-
ments, one or more of the identifying, transmitting, receiving,
determining, intercepting, making, fulfilling, creating, and/or
sandboxing steps disclosed herein. Network architecture 600
may also be used to perform and/or be a means for performing
other steps and features set forth in the instant disclosure.

As detailed above, computing system 510 and/or one or
more components of network architecture 600 may perform
and/or be a means for performing, either alone or in combi-
nation with other elements, one or more steps of an exemplary
method for safely executing programs.

While the foregoing disclosure sets forth various embodi-
ments using specific block diagrams, flowcharts, and

US 9,111,089 B1

13

examples, each block diagram component, flowchart step,
operation, and/or component described and/or illustrated
herein may be implemented, individually and/or collectively,
using a wide range of hardware, software, or firmware (or any
combination thereof) configurations. In addition, any disclo-
sure of components contained within other components
should be considered exemplary in nature since many other
architectures can be implemented to achieve the same func-
tionality.

In some examples, all or a portion of the systems described
herein may represent portions of a cloud-computing or net-
work-based environment. Cloud-computing environments
may provide various services and applications via the Inter-
net. These cloud-based services (e.g., software as a service,
platform as a service, infrastructure as a service, etc.) may be
accessible through a web browser or other remote interface.
Various functions described herein may be provided through
a remote desktop environment or any other cloud-based com-
puting environment.

The process parameters and sequence of steps described
and/or illustrated herein are given by way of example only
and can be varied as desired. For example, while the steps
illustrated and/or described herein may be shown or discussed
in a particular order, these steps do not necessarily need to be
performed in the order illustrated or discussed. The various
exemplary methods described and/or illustrated herein may
also omit one or more of the steps described or illustrated
herein or include additional steps in addition to those dis-
closed.

While various embodiments have been described and/or
illustrated herein in the context of fully functional computing
systems, one or more of these exemplary embodiments may
be distributed as a program product in a variety of forms,
regardless of the particular type of computer-readable media
used to actually carry out the distribution. The embodiments
disclosed herein may also be implemented using software
modules that perform certain tasks. These software modules
may include script, batch, or other executable files that may
be stored on a computer-readable storage medium or in a
computing system. In some embodiments, these software
modules may configure a computing system to perform one
or more of the exemplary embodiments disclosed herein.

In addition, one or more of the modules described herein
may transform data, physical devices, and/or representations
of physical devices from one form to another. For example,
one or more of the modules described herein may transform a
process into a sandboxed process. As another example, one or
more of the modules described herein may transform a com-
puting system into a computing system for safely executing
programs.

The preceding description has been provided to enable
others skilled in the art to best utilize various aspects of the
exemplary embodiments disclosed herein. This exemplary
description is not intended to be exhaustive or to be limited to
any precise form disclosed. Many modifications and varia-
tions are possible without departing from the spirit and scope
of the instant disclosure. The embodiments disclosed herein
should be considered in all respects illustrative and not
restrictive. Reference should be made to the appended claims
and their equivalents in determining the scope of the instant
disclosure.

Unless otherwise noted, the terms “a” or “an,” as used in
the specification and claims, are to be construed as meaning
“at least one of” In addition, for ease of use, the words
“including” and “having,” as used in the specification and
claims, are interchangeable with and have the same meaning
as the word “comprising.”

5

10

15

20

25

30

35

40

45

50

55

60

14

What is claimed is:

1. A computer-implemented method for safely executing
programs, at least a portion of the method being performed by
a computing device comprising at least one processor, the
method comprising:

identifying an attempt to launch an executable file;

identifying a reputation associated with the executable file;

determining, based on the reputation, that the executable
file is not trusted without determining that the executable
file is malicious based on a reputation score that indi-
cates that the executable file may be malicious, wherein
a favorable reputation score indicates that at least one of
a file and a source of a file is generally trusted within a
community and an unfavorable reputation score indi-
cates that at least one of a file or source of a file is
generally untrusted within a community;

in response to determining that the executable file is not

trusted without determining that the executable file is
malicious, fulfilling the attempt by sandboxing a process
instantiated from the executable file, wherein sandbox-
ing the process instantiated from the executable file
comprises imposing a filter on interactions between the
process and a resource of the computing device by, when
the process attempts to write to the resource, redirecting
the write attempt to a virtual file;

sandboxing the process across sessions by saving the vir-

tual file after the process terminates for use when the

executable file is subsequently executed and by:

intercepting at least one attempt by the process to change
a system state, the system state comprising the
resource of the computing device;

making a record of the attempted change in the virtual
file;

intercepting at least one subsequent attempt by the pro-
cess to inspect the system state;

fulfilling the subsequent attempt to inspect the system
state with the record of the attempted change from the
virtual file;

allowing attempts by the process to create, in a system
registry, settings that pertain only to an application
represented by the executable file.

2. The computer-implemented method of claim 1, wherein
identifying the reputation associated with the executable file
comprises identifying a percentage of user devices within a
community that contain an instance of the executable file.

3. The computer-implemented method of claim 1, wherein
determining that the executable file is not trusted is further
based on identifying suspicious signatures in the executable
file.

4. The computer-implemented method of claim 1, wherein
sandboxing the process comprises sandboxing a call to a
library invoked by the process and the resource of the com-
puting device comprises the library.

5. The computer-implemented method of claim 1, wherein
sandboxing the process comprises invoking a sandboxing
function of a separate virtualization system.

6. The computer-implemented method of claim 1, wherein
sandboxing the process comprises sandboxing the process
without sandboxing any processes instantiated from trusted
executable files launched from a same operating environment
as the executable file.

7. The computer-implemented method of claim 1, wherein:

identifying the reputation associated with the executable

file comprises identifying community-generated reputa-
tion data associated with the executable file;

US 9,111,089 B1

15

the community-generated reputation data indicates
whether the executable file is generally trusted or
untrusted within a community of users.

8. The computer-implemented method of claim 7, wherein
identifying community-generated reputation data associated
with the executable file comprises:

receiving information from a plurality of clients of a secu-
rity software publisher regarding the executable file, the
plurality of clients comprising the community of users;

using the information from the plurality of clients to estab-
lish a reputation of the executable file that indicates
whether the file is generally trusted or untrusted within
the community of users.

9. A system for safely executing programs on a computing

device comprising system resources, the system comprising:
an identification module programmed to identify an
attempt to launch an executable file;
a reputation module programmed to identify a reputation
associated with the executable file;
a determination module programmed to determine, based
on the reputation, that the executable file is not trusted
without determining that the executable file is malicious
based on a reputation score that indicates that the execut-
able file may be malicious, wherein a favorable reputa-
tion score indicates that at least one of a file and a source
of a file is generally trusted within a community and an
unfavorable reputation score indicates that at least one of
a file or source of a file is generally untrusted within a
community;
a sandboxing module programmed to, in response to deter-
mining that the executable file is not trusted without
determining that the executable file is malicious, fulfill
the attempt by sandboxing a process instantiated from
the executable file, wherein sandboxing the process
instantiated from the executable file comprises imposing
a filter on interactions between the process and a
resource of the computing device by, when the process
attempts to write to the resource, redirecting the write
attempt to a virtual file;
wherein the sandboxing module is further programmed to
sandbox the process across sessions by saving the virtual
file after the process terminates for use when the execut-
able file is subsequently executed and by:
intercepting at least one attempt by the process to change
a system state, the system state comprising the
resource of the computing device;

making a record of the attempted change in the virtual
file;

intercepting at least one subsequent attempt by the pro-
cess to inspect the system state;

fulfilling the subsequent attempt to inspect the system
state with the record of the attempted change from the
virtual file;

allowing attempts by the process to create, in a system
registry, settings that pertain only to an application
represented by the executable file;

at least one processor configured to execute the identifica-
tion module, the reputation module, the determination
module, and the sandboxing module.

10. The system of claim 9, wherein the identification mod-
ule is programmed to identify the reputation associated with
the executable file comprises identifying a percentage of user
devices within a community that contain an instance of the
executable file.

10

15

25

30

35

40

45

50

55

60

65

16

11. The system of claim 9, wherein the determination mod-
ule is programmed to determine that the executable file is not
trusted based on identifying suspicious signatures in the
executable file.

12. The system of claim 9, wherein the sandboxing module
is programmed to sandbox the process by sandboxing a call to
a library invoked by the process and the resource of the
computing device comprises the library.

13. The system of claim 9, wherein the sandboxing module
is programmed to sandbox the process by invoking a sand-
boxing function of a separate virtualization system.

14. The system of claim 9, wherein the sandboxing module
is programmed to sandbox the process by sandboxing the
process without sandboxing any processes instantiated from
trusted executable files launched from a same operating envi-
ronment as the executable file.

15. The system of claim 9, wherein:

the reputation module is programmed to identify the repu-

tation associated with the executable file by identifying
community-generated reputation data associated with
the executable file;

the community-generated reputation data indicates

whether the executable file is generally trusted or
untrusted within a community of users.

16. A non-transitory computer-readable-storage medium
comprising one or more computer-executable instructions
that, when executed by at least one processor of a computing
device, cause the computing device to:

identify an attempt to launch an executable file;

identify a reputation associated with the executable file;

determine, based on the reputation, that the executable file

is not trusted without determining that the executable file
is malicious based on a reputation score that indicates
that the executable file may be malicious, wherein a
favorable reputation score indicates that at least one of a
file and a source of a file is generally trusted within a
community and an unfavorable reputation score indi-
cates that at least one of a file or source of a file is
generally untrusted within a community;

in response to determining that the executable file is not

trusted without determining that the executable file is
malicious, fulfill the attempt by sandboxing a process
instantiated from the executable file, wherein sandbox-
ing the process instantiated from the executable file
comprises imposing a filter on interactions between the
process and a resource of the computing device by, when
the process attempts to write to the resource, redirecting
the write attempt to a virtual file; and

sandbox the process across sessions by saving the virtual

file after the process terminates for use when the execut-

able file is subsequently executed and by:

intercepting at least one attempt by the process to change
a system state, the system state comprising the
resource of the computing device;

making a record of the attempted change in the virtual
file;

intercepting at least one subsequent attempt by the pro-
cess to inspect the system state;

fulfilling the subsequent attempt to inspect the system
state with the record of the attempted change from the
virtual file;

allowing attempts by the process to create, in a system
registry, settings that pertain only to an application
represented by the executable file.

17. The non-transitory computer-readable-storage
medium of claim 16, wherein identifying the reputation asso-
ciated with the executable file comprises identifying a per-

US 9,111,089 B1

17

centage of user devices within a community that contain an
instance of the executable file.

18. The non-transitory computer-readable-storage
medium of claim 16, wherein determining that the executable
file is not trusted is further based on identifying suspicious
signatures in the executable file.

19. The non-transitory computer-readable-storage
medium of claim 16, wherein sandboxing the process com-
prises sandboxing a call to a library invoked by the process
and the resource of the computing device comprises the
library.

20. The non-transitory computer-readable-storage
medium of claim 16, wherein sandboxing the process com-
prises invoking a sandboxing function of a separate virtual-
ization system.

10

15

18

